

Contents

- 1. Introduction
- 2. Summary of Benefits
- 3. Fundamental Structure
- 4. Theoretical Background
- Patent/Classification/PerformanceSafety/Green Certification
- 6. Examples of Applications
- 7. Reduction in Operating Costs
- 8. References
- 9. Installation Process
- 10. Installation Overview
- 11. Product Specifications
- 12. Conclusion

12 enposs

1. Introduction

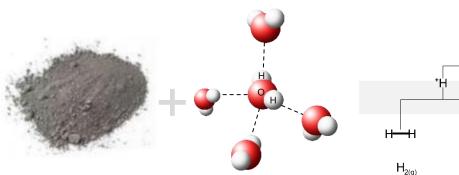
Manufacturing Company

Company Name	ENPOSS
Year of Establishment	January 2008
Product	Power Saving System(FORCE) Manufacturing & Sales
Location	416, 10th Floor, Room 1031, Hwagok-ro, Gangseo, Seoul Gayang Station The Sky Valley 5th Knowledge Industry Center
Homepage	www.enposs.com

- 2022 Updated UL certification
- 2019 Acquisition of site for factory establishment (Otama Village Sales Office, Adachi-ku, Fukushima Prefecture, Japan)
- 2018 KR classification certification
 - Establishment of a local corporation in the United States
 - Establishment of a local corporation in Japan
 - Establishment of a joint venture in Vietnam
- 2017 Launch of 2nd generation FORCE (Approximately 50% improvement in device efficiency compared to the 1st generation)
- **2016** Registered a Korean patent related to harmonic distortion
 - Passed KTL [High Potential Test of High Voltage], [Electro Magnetic Compatibility Test]

- 2015 JQA (Japan) performance certification
 - KTC (Korea) performance certification
 - Establishment of a local corporation in China
- 2013 SGS (Spain) performance certification
 - Passed the withstand voltage test standards for high-voltage products
- 2012 US patent registration
- 2011 USA NLTC (MET) certification
- 2010 Obtained CE certification (COC)
 - KOREA patent registration (DOC)
 - PCT patent registration
 - All materials passed ROHS

- 2009 ANCE (Mexico) safety certification
 - ANCE (Mexico) performance certification
 - KTL EML Test
- 2008 Establishment of ENPOS Co., Ltd.
 - Chinese patent registration
 - Vietnam patent registration
 - TUV (Spain) certification
- 2007 Power improvement device KOREA patent application
 - Power improvement device PCT International patent application
 - Establishment of own production factory
 - Commercialization of power improvement devices


2. Summary of Benefits

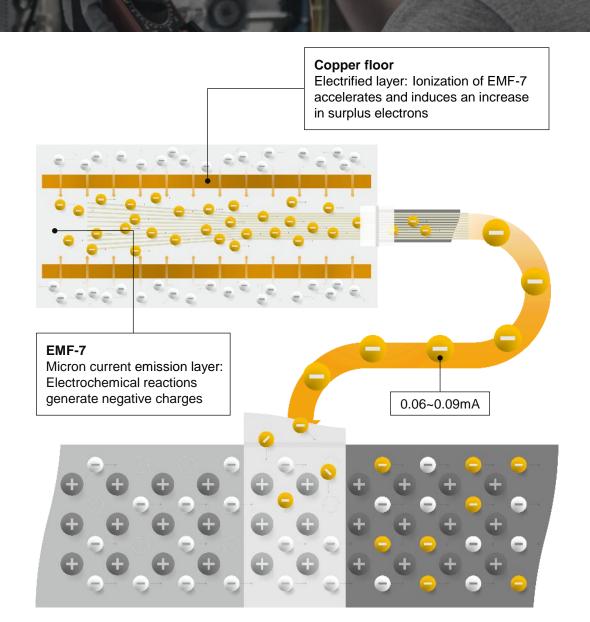
- I. 5~15% Electricity savings
- **Ⅲ.** THD Reduction (Total Harmonic Distortion)
- IV. 10~20% Fuel Consumption Savings (Payback Within 18 months)
- **∨. Extend the Lifetime Of Equipment**
- VI. No Changes to Existing System & Safety

3. Fundamental Structure

Base	Tourmaline
Longevity	15 years
Specificity	A polar crystal with an asymmetric dipole that has the characteristic of being permanently electro-polarized, when highly heated both ends become positively charged. Under normal conditions, it is negatively charged.

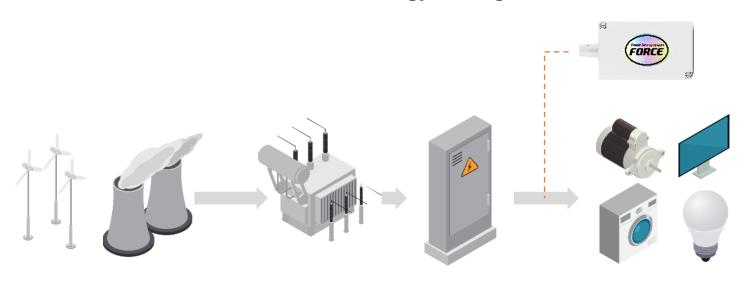
Tournaline $H_{2(g)}$ $H_{3}O^{+}$ $H_{3}O_{2}^{-}$

Negative charge generation (Free Electrons Source)


Tourmaline Powder

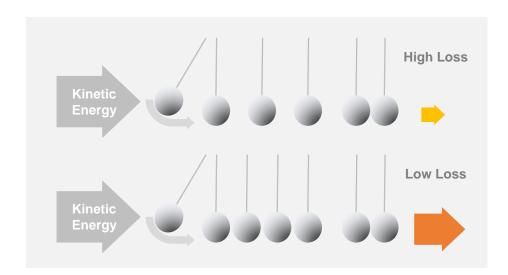
Water

3. Fundamental Structure

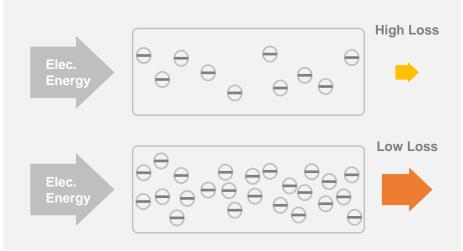

- Electrochemical reactions of minerals
 Negatively charged (low current)
- By accelerating the accumulation of negative charges it creates surplus electrons
- An increase in surplus electrons creates improved conductivity, increased electron density, and increased free electrons
- Surplus electron transfer at 0.1~1mm/sec
- Improved electrical energy with an increase in electrons, an increase in the delivery efficiency, improved current flow, and a reduction in electrical losses

Electric Power Saving
Reduced Impedance, Heat, Noise, Vibration
and Harmonic Distortion

4. Theoretical Background


Process of Energy Saving

Power Supply & Meter			Γransformer		Panel		Load
Before Installing FORCE	100 kWh	=	93~98%		97~99%	80~95%	80 kWh
(Power Loss)	-	=	2~7%	>	1~3%	5~20%	-
After Installing FORCE	90 kWh		95~99%		98~99%	90~98%	80 kWh
(Power Loss)	-		1~5%		1~2%	2~10%	-


4. Theoretical Background

The efficiency of energy transfer is proportional to the density of mediators

Kinetic Energy Movement

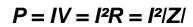
The difference in the number of pendulums results in a difference in energy transfer efficiency

Electrical Energy Movement

The difference in the number of electrons is the difference in energy transfer efficiency

Therefore, the number of free electrons in a conductor increases the efficiency of electrical energy transfer

4. Theoretical Background


Definition of Power Saving Effects According to Impedance and Resistance Reduction

If we denote the total impedance as **Z**, reactance as **X**, complex representation of applied voltage as **V**, effective value as **Ve**, complex representation of flowing current as **I**, and effective value as **Ie**, the following equations hold.

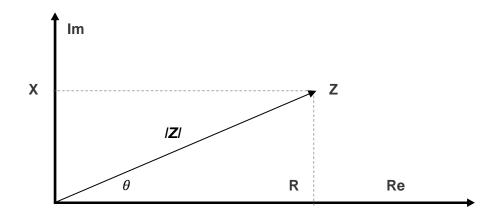
$$Z = R + j\omega L + \frac{1}{j\omega c} = R + jX$$

$$Ve = Ie \cdot Z$$

$$Ve = Ie \cdot (R + jX)$$

$$P_e = V_e \cdot I_e \cdot \cos\theta$$

= $I_e^2 \cdot Z$


Power consumption before installation

$$P=(100A)^2\times 1(Z) = 10,000 W$$

Power consumption after installation

$$P=(100A)^2\times0.9(Z) = 9,000 W$$

By reducing the impedance (Z) value, the effect of power savings becomes apparent.

5. Patent Certification

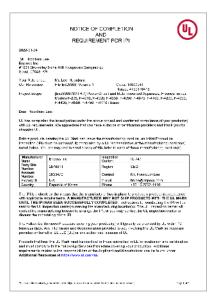
.

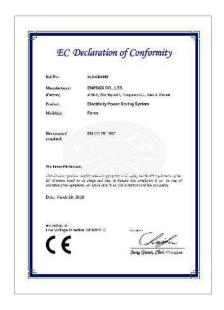
Korea USA China Japan Vietnam

5. Class Certificate

			Certificate Na + HISTE 0029-1
Date of Brist	25-14 5 7078	Date of Commencement	4 (00 July 0018)
World Order No.	-	Pereliase Order No.	
Place of Inspection	Grengs - co. (Drea	Office	Red Office
Manufacturer	071,2090		
Purtheer	-		
At tD, No. Intended for	FOR ABONE 18 Stock	Quantity Weight	(D)
Description	Clean ical Power Saving Davi	ios .	
Appeared States	1		
Teeting and Impeo	des : o Frequency leavelry Test (19	O all record in assertance with the	8 000 +4.
1. Fact sted Pari 2. Test Assert 6 Environmental	e friezency templity Tels: (20 Sector Sectors to make satisfied (C) all encoded to assess some sittle CC of accordance with 100 cm is 100 Text. to No. 1000001W-CMC0000001C1, SQL	specification of Tipe Approval (2)
Fact lead of Paris Jack Reach II Enrichmental For details, not Marking, Social No.	e frequency tempolity Test INS better "Bod less the more satisfied I am to the attached last Rocor	e accomplance of the FEC GR 6 ND Text.	specification of Tipe Approval (2)

- KR Certificate issued on July 2018
- Radiated Radio Frequency Immunity Test (RS) in accordance with IEC 61000-6-4
- Environment Test Standard: IACS UR E10 Test Specification for Type Approval
- Conducted Emission Test
- Radiated Emission Test
- Electrostatic Discharge Immunity Test
- Electromagnetic Field Immunity Test
- Electrical Fast Transient/Brust Immunity Test
- Surge Immunity Test
- Conducted Immunity Test
- Conducted Low Frequency Test
- Power Supply Variation Test
- Electrical Power Supply Failure Test
- Cold Test
- Dry Heat Test
- Damp Heat Test
- Insulation Resistance Test
- High Voltage Test

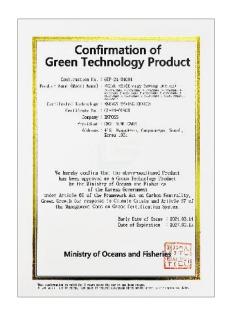

5. Performance Certification


.

KTC TUV SGS ANCE JQA

5. Safety Certification

...............


UL CE POCC

PUBLIC PROCUREMENT SERVICE

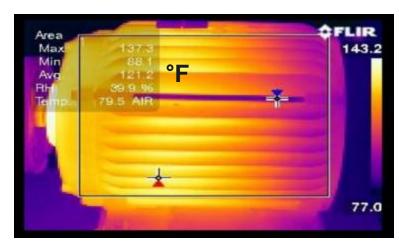
5. Green Certification

Korea Green Certification(1)

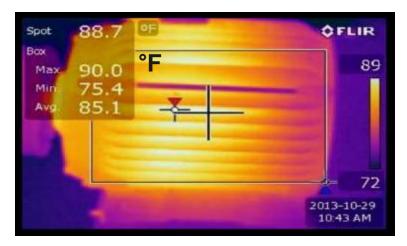
Korea Green Certification(2)

Malaysia Green Certification

12 enposs


6. Examples of Applications

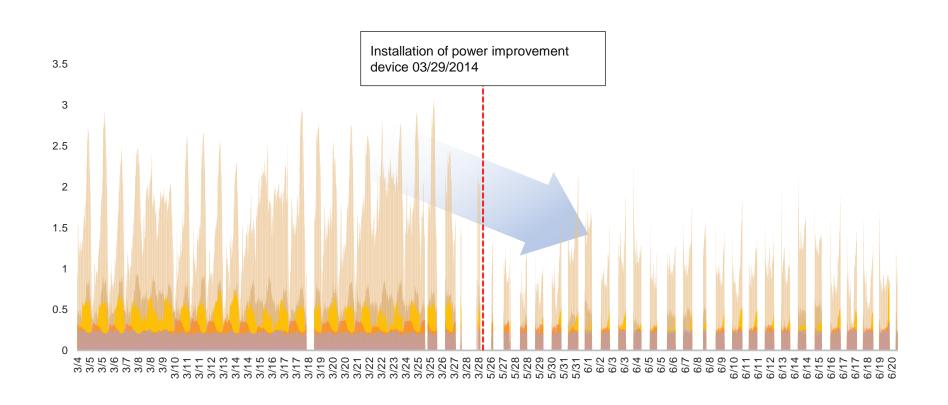
[Heat]


The temperature drop was observed on the surface of the pump motor

Average temperature was reduced from 49.6 °C to 29.5 °C by 29.8%

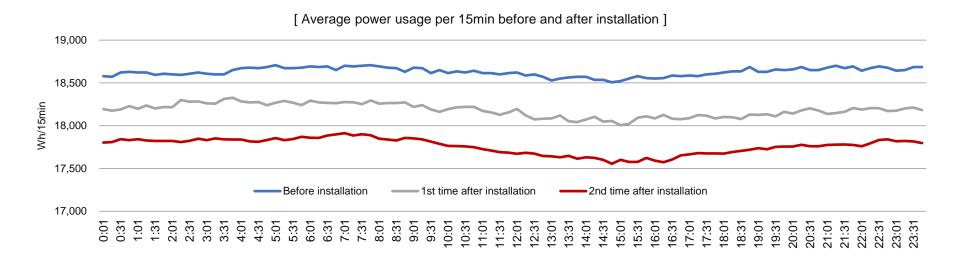
Before

After

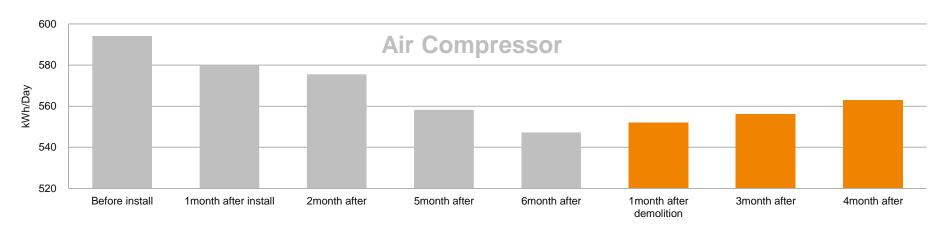

58.5 °C	Max	34.4 °C (34.5% Down)
31.2 °C	Min	24.1 °C (14.4% Down)
49.6 °C	Avg	29.5 °C (29.8% Down)

6. Examples of Applications

[Total Harmonic Distortion]


Comparison of circulation pump R-phase harmonics before and after installation

Minimizes losses by reducing power dissipation factors/THD



6. Examples of Applications

[Electronic Power]

[Average power amount before and after installation and removal of power saver(kWh/Day)]

6. Examples of Applications

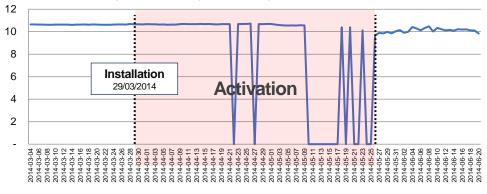
[Kyunghee Medical Center]

■ Installation points and capacity

- Kyunghee Medical Center / Circulation pump (ward temperature control)
- · Point: Transformer ACB secondary side
- Installed Capacity: Total 1,000 kW (1,000 kW, 1 SET)

■ Methods of analysis

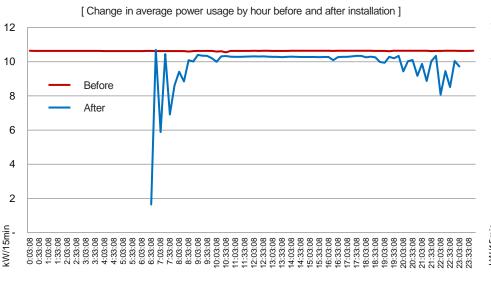
- Instrument: HIOKI 3169 (Wh/5min)
- Comparison of power consumption before and after installation

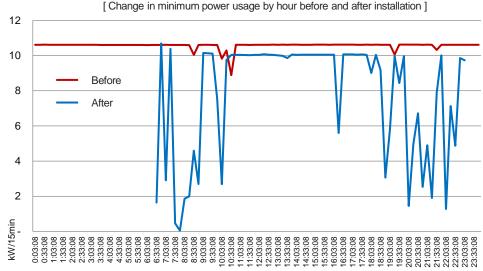

■ Installation results

- Objective : More than 5% less Power consumption than before installation
- Result: 7.63% Reduction

	Before	After	Saving Ratio(%)
Average Power usage (W/15min)	10,632	9,821	7.63
Harmonics(A)	3.28	2.19	33.11

[Change in daily average power usage before and after installation]




12 enposs

6. Examples of Applications

[Kyunghee Medical Center]

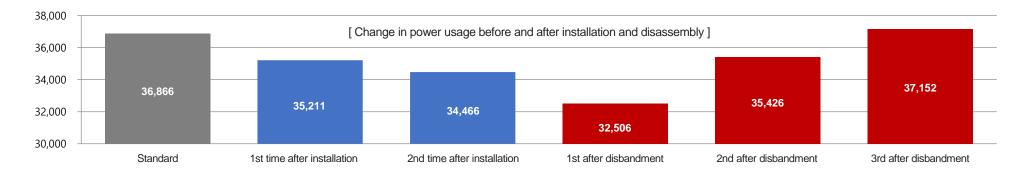
Compare	Standard	Average before installation	Average After installation	Ratio	Result
Average power usage	The more it	10,632W/15min	9,821W/15min	7.63%	Reduction
Reactive power	decreases, the better	7,115W/15min	7,078W/15min	5.28%	Decrease
5 Harmonic		1.67A	1.04A	37.91%	Decrease
7 Harmonic	The lower the	0.43A	0.28A	34.47%	Decrease
11 Harmonic	better	0.27A	0.25A	8.5%	Decrease
Harmonic Sum		3.28A	2.19A	33.11%	Decrease

6. Examples of Applications

[Samsung Fine Chemicals]

■ Installation points and capacity

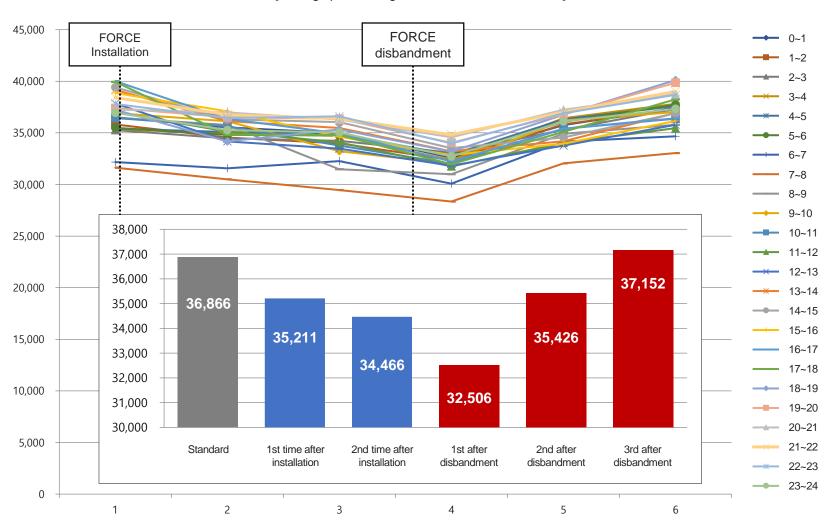
- · Samsung Fine Chemicals / Lighting, electric heating
- · Point: Transformer ACB secondary side
- Installed Capacity: Total 200 kW (200 kW, 1 SET)


■ Methods of analysis

- Instrument: HIOKI 3169 (Wh/10min)
- Install FORCE → Confirm reduction in power usage →
 Dismantle FORCE → Confirm increase in power usage

■ Installation results

- Objective : More than 5% less Power consumption than before installation
- Result: 6.5% Reduction



6. Examples of Applications

[Samsung Fine Chemicals]

[Change power usage before and after installation]

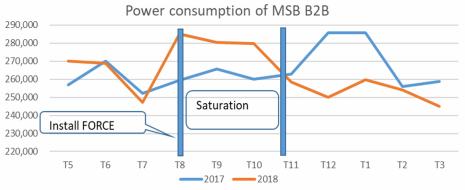
12 enposs

6. Examples of Applications

[Bitexco building]

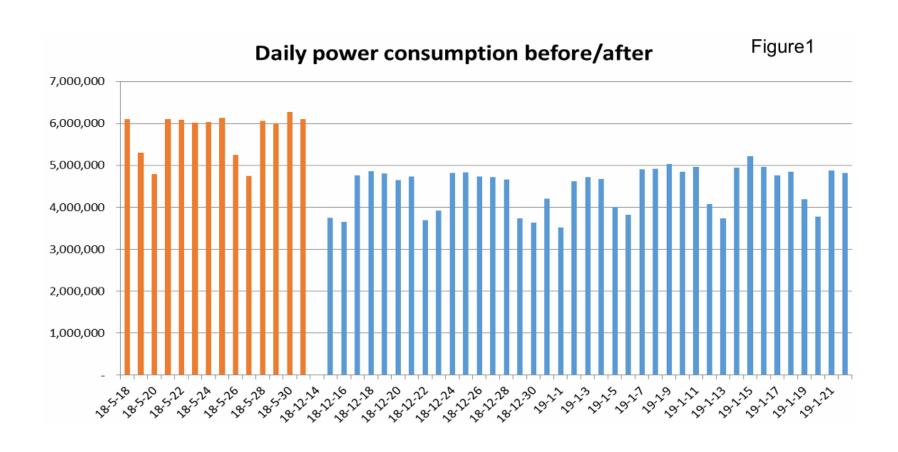
■ Installation points and capacity

- · The Bitexco building
- Point: Transformer ACB secondary side
- Installed Capacity: Total 1,000 kW


■ Methods of analysis

- Instrument: HIOKI 3169 (Wh/5min)
- Comparison of power consumption before and after installation

■ Installation results


- Objective : More than 5% less Power consumption than before installation
- Result: 18.3% Reduction

6. Examples of Applications

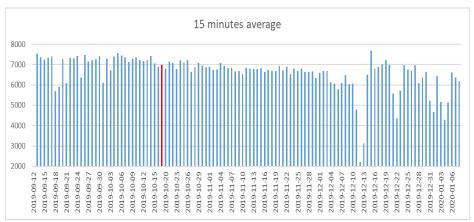
[Bitexco building]

6. Examples of Applications

[Marriot Hotel in Hanoi]

■ Installation points and capacity

- Marriot Hotel in Hanoi Vietnam
- Point: Transformer ACB secondary side
- · Installed Capacity: Total 200 kW


■ Methods of analysis

- Instrument: HIOKI 3169 (Wh/5min)
- Comparison of power consumption before and after installation

■ Installation results

- Objective : More than 5% less Power consumption than before installation
- Result: 9.5% Reduction

12 enposs 7. Reduction in Operating Costs

■ FORCE specification calculation method

- Vessel Generator capacity (1,000kw) x Power factor 80% (0.8) x Peak utilization percentage (80~90%)
 - = Installed FORCE specification (about 1,500kw)

■ Payback period examples based on fuel consumption of 1,000kw load, (1,500 kW FORCE) and average cost.

- Reduction in fuel Usage per day of 8% x 365 days = \$43,800.00 per month (Payback period about 23 months)
- Reduction in fuel usage per day of 10% x 365 days = \$54,750.00 per month (Payback period about 18 months)
- Reduction in fuel usage per day of 12% x 365 days = \$65,700 per year (Payback period about 16 months)

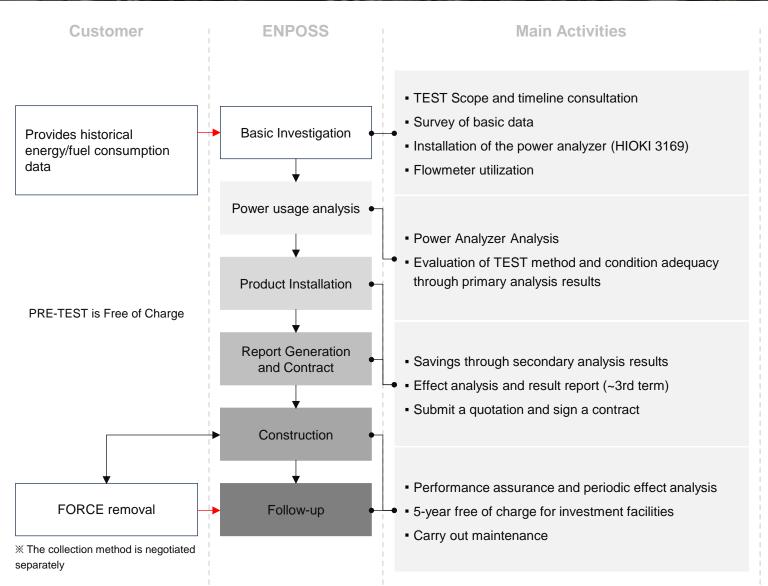
* B-C price : US600\$/ton

8. References

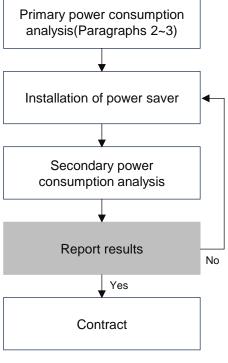
■ Commercial and Industrial installations

Company	Installed capacity (kW)	Company	Installed capacity (kW)
H-Line Shipping	62,900	Credulity wires	2,870
HMM	1,000	POSCO	10,550
KLCSM	1,200	Ilshin Industrial Metals	2,670
Lotte Fine Chemicals	1,850	Limcheon Industry	1,200
Ottogi Foods	13,550	KEPCO Industrial Development	1,500
Finite Kimberley	5,000	Gyeongam Building	1,800
Taekwang Business	5,000	Shinhan Bank	2,500
Hanwha Total	1,300	Daejin Industry	1,000
Kolon Life Sciences	2,000	DYM	1,700
Henkel Korea	1,200	Shinhan Industrial	1,750
Orange Dunes CC	2,000	Samsung Corning	1,000

8. References

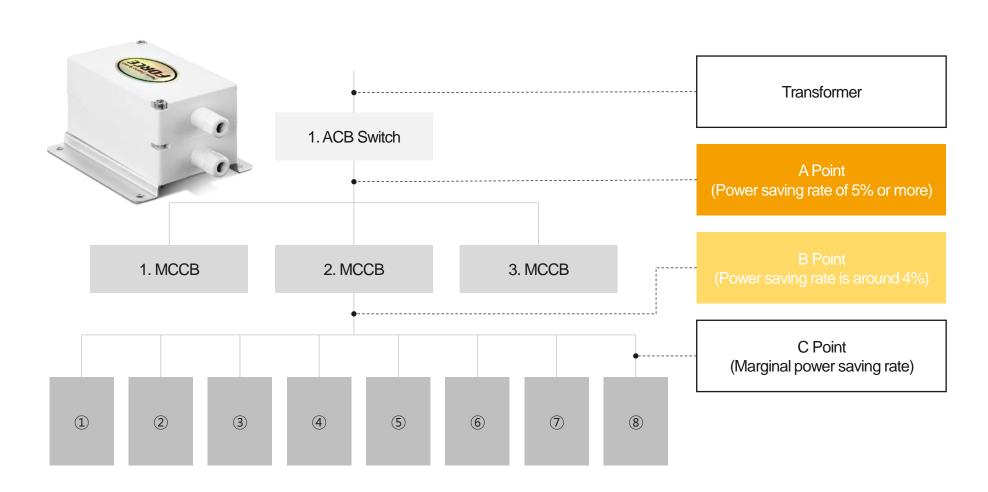

■ Vessel installations

Vessel	Installed capacity (kW)	Vessel	Installed capacity (kW)	Vessel	Installed capacity (kW)	Vessel	Installed capacity (kW)
HL SUCCESS	1,350	HYUNDAI HADONG	1,100	HL BORYEONG	1,200	HL AQUAMARINE	2,000
HL SALDANHA BAY	1,350	SAMCHEONPO	1,100	HL BRAZIL	2,000	SAO PEARL	2,000
HL TUBARAO	2,000	HL PASSION	1,200	HL TAEAN	1,100	HL NAMBU1	2,000
HL IBT	1,100	HL PIONEER	1,200	SAO LOUIS	2,000	HL NAMBU2	2,000
HYUNDAI KOMIPO	1,100	HL PORT WALCOTT	1,200	SAO MASTER	2,000	SK. K TANAN	1,500
HL HARMONY	1,100	HL VENUS	2,000	HL DIAMOND	2,000	FEG SUCCESS	1,000
HL HADONG	1,200	HYUNDAI LEADER	1,000	SAO NEPTUNE	2,000	HL BALIKPAPAN	1,200
HL GLADSTONE	1,100	HL MERCURY	2,000	HL EMERALD	2,000	WP BRAVE	1,200
HL BALTIMORE	900	HL ESPERANCE	1,350	HL ECO	2,000	PAN COSMOS	1,500
HL VISION	1,350	HL DALRYMPLE BAY	1,200	HL PEARL	2,000	Lake Shihwa Ferry	300
HL SHINBORYEONG	1,200	HL PRIDE	1,200	HL GREEN	2,000	-	-
HL SINES	1,350	HL DANGJIN	1,200	SAO OASIS	2,000	-	-
HL PORT HEADLAND	1,350	HL SAMARINDA	1,200	HL SAPPHIRE	2,000	-	-


12 enposs

9. Installation Process

[If tested]

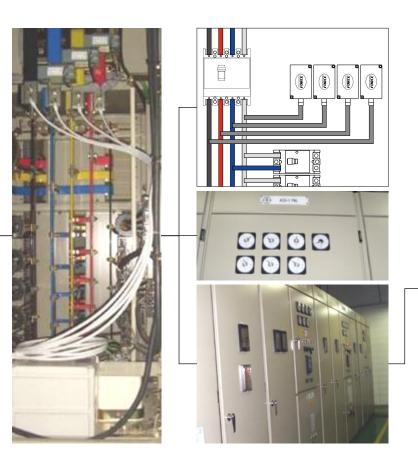

Power Consumption analysis procedure

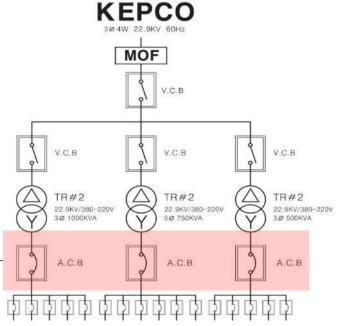
- Power Analyzer (HIOKI-3169) use primary and secondary power consumption
- Conduct analysis

10. Installation Overview

■ Power System Location / Power Saving Rate

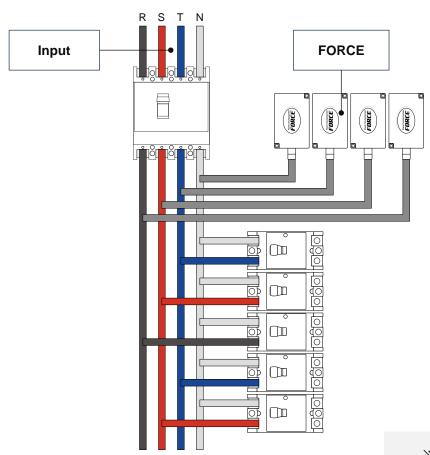
10. Installation Overview


■ Switch Board



Connecting to R,S,T,N angular phase easy to install

Ultra-small power improvement device UNIT



Installation Location

Main 2nd stage ACB (Air Circuit Breaker) parallel connection to R, S, T, N phases

10. Installation Overview

■ Distribution Board

FORCE placement (inside switchboard cabinet)

One for each of the main 2nd stage breakers R, S, T, and N Parallel connection makes installation very simple and fast

X FORCE may be installed inside or outside the switchboard cabinet.

12 enposs

11. Product Specifications

Power	Capacity (kW)	Model	Wire	Size (W×L×H)	Weight (kg)
1P 2W	5	F-2005	8SQ	80×130×35	1.5
1P 2VV	10	F-2010	osu	80×110×70	1.8
	5	F-3005		65×95×55	1.5
	10	F-3010		80×110×70	2.7
	20	F-3020	14SQ	80×130×70	3.3
	30	F-3030		80×180×70	4.5
	50	F-3050		80×180×85	5.8
3P 3W	75	F-3070		130×175×75	8.6
3F 3W	100	F-3100		130×175×100	11.0
	200	F-3200		140×230×100	16.6
	300	F-3300	25SQ	150×245×100	18.8
	400	F-3400		150×250×130	24.7
	500	F-3500		190×280×130	30.9
	750	F-3750		190×380×130	45.8

Power	Capacity (kW)	Model	Wire	Size (W×L×H)	Weight (kg)
	10	F-4010		65×95×55	2.0
	20	F-4020		80×110×70	3.6
	30	F-4030	14SQ	80×130×70	4.5
	50	F-4050		80×180×70	6.1
	75	F-4070		80×180×85	7.8
2D 4W	100	F-4100		130×175×75	11.5
3P 4W	200	F-4200		130×175×100	14.6
	300	F-4300		140×230×100	22.2
	400	F-4400	25SQ	150×245×100	25.1
	500	F-4500		150×250×130	33.0
	750	F-4750		190×280×130	41.3
	1,000	F-4110		190×380×130	61.1

- Products with a capacity of less than 5kW and more than 750kW are customized as per client's request.
- Depending on the length and thickness of the wire, size/weight may differ from the table.

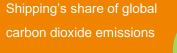
12. Conclusion

■ EEXI, Energy (Efficiency Existing Ship Index) Regulatory introduction

A regulation that extends the Energy Efficiency Design Index (EEDI), which applies only to new ships contracted to be built after January 1, 2013. The International Energy Efficiency Certificate (IEEC) must be issued and placed on board from 2023 to operate.

EEXI regulation?

Regulations to expand EEDI, which applies only to new ships contracted for construction after January 1, 2013, to all ships



Reduce total international shipping greenhouse gas emissions by 50% compared to 2008 emissions by 2050

IMO's greenhouse gas response strategy

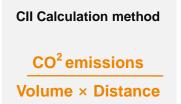
2.89% As of 2018

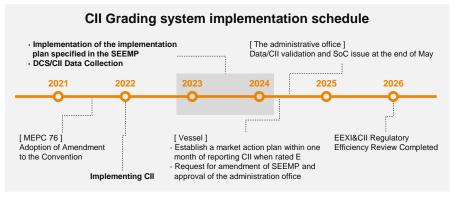
- If the regulatory standards are not met, IEEC must be issued after meeting the regulatory standards by improving energy efficiency, such as installing an engine output limiter.
- Based on the average energy efficiency value of vessels built from 1999~2009, a reduction rate of 20% is required at 24 years and 30% after 25 years of age.

12. Conclusion

■ CII (Carbon Intensity Indicator) enforcement

The IMO has set a goal to reduce greenhouse gas emissions by 50%, as compared to 2008 by 2050, the CII system to regulate greenhouse gas emissions will be implemented beginning in 2023..


CII regulation?


The ship's efficiency is calculated based on the ship's actual annual fuel consumption and operating distance, and a rating is given based on the level of CII permissible value compared to the CII permissible value required for the ship during the relevant period

CII regulatory process

- Ship energy efficiency management plan(SEEMP)

 → Approved by an accreditation agency
- CII achievement values are reported annually to the administration or ROs
- Assign a carbon intensity rating to a ship based on the achieved value compared to the CII allowable value
- Grade D for 3 consecutive years, Vessels that have been assigned E status for more than one year are operating at low speeds, A low-carbon fuel use energy efficiency improvement plan must be established and approved.
- As the regulatory standards for the reduction rate are strengthened every year, it is necessary to continue efforts to increase energy efficiency..

Thank you

